Semester Thesis: "Object Recognition with Mobile Phones"

Marcel Germann

February 16, 2006 Supervisor: Till Quack

- Introduction
- 2 Approach 1
- 3 Approach 2
- 4 Results
- Conclusions

Outline Introduction Approach 1 Approach 2 Results Conclusions

Mobile Phone Technologies Idea and Motivation Local Features Two Approaches

Mobile Phone Technologies

Mobile Phone Technologies

• SMS, MMS

Mobile Phone Technologies

- SMS, MMS
- infrared, bluetooth

Mobile Phone Technologies

- SMS, MMS
- infrared, bluetooth
- Cameras

Outline Introduction Approach 1 Approach 2 Results Conclusions

Mobile Phone Technologies Idea and Motivation Local Features Two Approaches

Combine OR with Mobile Phones

Combine OR with Mobile Phones

• Use as input a picture taken with mobile phone camera

Combine OR with Mobile Phones

- Use as input a picture taken with mobile phone camera
- Send it to a server which applies OR algorithm

Combine OR with Mobile Phones

- Use as input a picture taken with mobile phone camera
- Send it to a server which applies OR algorithm
- Server sends information based on the result back to the users mobile phone

Outline Introduction Approach 1 Approach 2 Results Conclusions

Mobile Phone Technologies Idea and Motivation Local Features Two Approaches

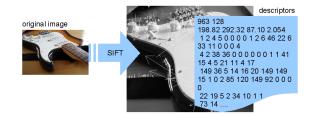
Mobile Phone Technologies Idea and Motivation Local Features Two Approaches

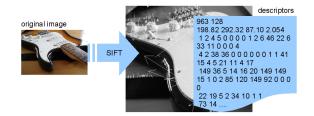
Applications

Advertising campains

- Advertising campains
- Museum guide

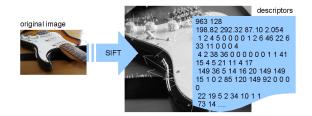
- Advertising campains
- Museum guide
- City guide (no barcode needed)


- Advertising campains
- Museum guide
- City guide (no barcode needed)
- Product information (books, etc.)

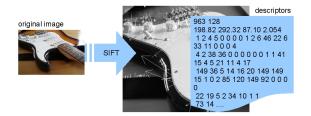

- Advertising campains
- Museum guide
- City guide (no barcode needed)
- Product information (books, etc.)
- Help for the blind


Scale Invariant Feature Transform (SIFT) by David G. Lowe

Scale Invariant Feature Transform (SIFT) by David G. Lowe

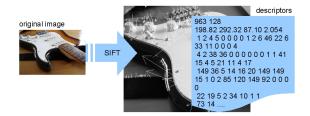

Scale Invariant Feature Transform (SIFT) by David G. Lowe

Features:


Scale invariant

Scale Invariant Feature Transform (SIFT) by David G. Lowe

- Scale invariant
- Rotation invariant


Scale Invariant Feature Transform (SIFT) by David G. Lowe

- Scale invariant
- Rotation invariant
- Robust against noise and change in illumination

Scale Invariant Feature Transform (SIFT) by David G. Lowe

- Scale invariant.
- Rotation invariant
- Robust against noise and change in illumination
- Also small changes in 3D viewpoint are possible

Outline Introduction Approach 1 Approach 2 Results Conclusions

Mobile Phone Technologies Idea and Motivation Local Features Two Approaches

Two Approaches

Two Approaches

• Approach 1: server side calculation

Two Approaches

- Approach 1: server side calculation
- Approach 2: calculation fully on mobile phone

• Do the expensive algorithms on a server

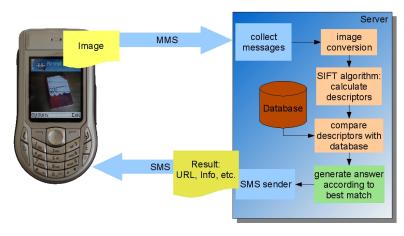
- Do the expensive algorithms on a server
- Take the picture with mobile phone and send it to the server

- Do the expensive algorithms on a server
- Take the picture with mobile phone and send it to the server
- No need to install something on the mobile phone

- Do the expensive algorithms on a server
- Take the picture with mobile phone and send it to the server
- No need to install something on the mobile phone
- Large database possible

Transmission of a picture from the mobile phone to the server. Possibilities:

Transmission of a picture from the mobile phone to the server. Possibilities:


• bluetooth, infrared: no real mobility

Transmission of a picture from the mobile phone to the server. Possibilities:

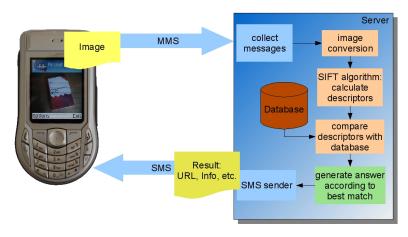
- bluetooth, infrared: no real mobility
- internet: bad usability and rarely supported

Transmission of a picture from the mobile phone to the server. Possibilities:

- bluetooth, infrared: no real mobility
- internet: bad usability and rarely supported
- MMS: standard on most mobile phones

Symbian Application

Symbian Application

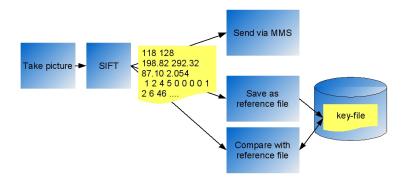

• Small application that runs on the mobile phone

Symbian Application

- Small application that runs on the mobile phone
- Functions: take picture, send picture

Symbian Application

- Small application that runs on the mobile phone
- Functions: take picture, send picture
- Better compatibility


Approach 2: Calculation Fully on Mobile Phone

Approach 2: Calculation Fully on Mobile Phone

One application that runs completely independent on a mobile phone.

Approach 2: Calculation Fully on Mobile Phone

One application that runs completely independent on a mobile phone.

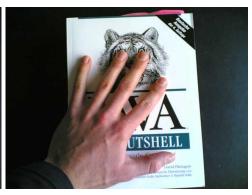
• Implementation on Symbian v8.0

- Implementation on Symbian v8.0
- ullet Symbian is 'kind of' C++

- Implementation on Symbian v8.0
- Symbian is 'kind of' C++
- Problems with Symbian:

- Implementation on Symbian v8.0
- Symbian is 'kind of' C++
- Problems with Symbian:
 - Error handling

- Implementation on Symbian v8.0
- Symbian is 'kind of' C++
- Problems with Symbian:
 - Error handling
 - No global writable variables


- Implementation on Symbian v8.0
- Symbian is 'kind of' C++
- Problems with Symbian:
 - Error handling
 - No global writable variables
 - Very very small stack

- Implementation on Symbian v8.0
- Symbian is 'kind of' C++
- Problems with Symbian:
 - Error handling
 - No global writable variables
 - Very very small stack
 - Heap is limited at 5 MB. This is e.g. too small to hold more than four 640*480 pictures with float pixels!

- Implementation on Symbian v8.0
- Symbian is 'kind of' C++
- Problems with Symbian:
 - Error handling
 - No global writable variables
 - Very very small stack
 - Heap is limited at 5 MB. This is e.g. too small to hold more than four 640*480 pictures with float pixels!
- Application calculation with different image sizes: 320*240 (slower) and 160*120 (faster)

Specific example:

Left: Original picture gives 3233 keypoints. Right: Picture received by MMS gives 853 keypoints.

Server side matching:


Keypoints calculated on the mobile:

Fast calculation (image size 160*120) takes ≈ 13 sec and gives 35 keypoints.

Keypoints calculated on the mobile:

Fast calculation (image size 160*120) takes ≈ 13 sec and gives 35 keypoints.

Result: \Rightarrow 25 matches

Keypoints calculated on the mobile:

Slow calculation (image size 320*240) takes ≈ 50 sec and gives 61 keypoints.

Keypoints calculated on the mobile:

Slow calculation (image size 320*240) takes ≈ 50 sec and gives 61 keypoints.

Result: \Rightarrow 27 matches

Results

Demo ...

• Framework 'mobileor' is a basis for mobile object recognition.

- Framework 'mobileor' is a basis for mobile object recognition.
- Results are promising even those with keypoints calculated on the mobile phone.

- Framework 'mobileor' is a basis for mobile object recognition.
- Results are promising even those with keypoints calculated on the mobile phone.
- Server side approach can be used to e.g. build up a city guide.

Solutions for a large database

- Solutions for a large database
- Specific application (e.g. city guide)

- Solutions for a large database
- Specific application (e.g. city guide)
- Improve the SIFT implementation on the mobile phone

- Solutions for a large database
- Specific application (e.g. city guide)
- Improve the SIFT implementation on the mobile phone
- SURF instead of SIFT

End

Thank you!